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Introduction
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Muon Anomalous Magnetic Moment Experiment

[Bennett et al., 0602035[hep-ex]]
~p

~s

High-precision experiment of spin precession
relative to momentum direction in storage ring

Anomalous frequency ωa = g−2
2

eB
m = aµ eB

m

Sensitive to new physics, and also discrepant with experiment!
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Fermilab Muon g − 2 Experiment

Experiment has come a long way (and so has theory!)
Aiming for a 4× improvement in uncertainty over the BNL result
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Muon g − 2 Theory Error Budget
Contribution Value ×1010 Uncertainty ×1010

QED 11 658 471.895 0.008
EW 15.4 0.1
HVP LO 692.5 2.7
HVP NLO −9.84 0.06
HVP NNLO 1.24 0.01
Hadronic light-by-light 10.5 2.6
Total SM prediction 11 659 181.7 3.8
BNL E821 result 11 659 209.1 6.3
Fermilab E989 target ≈ 1.6

Experiment-Theory difference is 27.4(7.3) =⇒ 3.7σ tension!

Target measurement:
Hadronic Vacuum
Polarization (HVP)

=⇒
Lattice results have
larger uncertainty, but
systematically improve

=⇒
Dispersive (“R-ratio”)
results more precise,
but static

No new physics
KNT 2018

Jegerlehner 2017
DHMZ 2017
DHMZ 2012

HLMNT 2011
RBC/UKQCD 2018

Mainz 2019
FNAL/HPQCD/MILC 2019

SK 2019
ETMC 2018

RBC/UKQCD 2018
BMW 2017
Mainz 2017

HPQCD 2016
ETMC 2013

610 630 650 670 690 710 730 750

Lattice + R-ratio

Lattice

R-ratio

aµ × 1010[1904.09479[hep-lat]]
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Tensions in Experiment

[Zhang, EPS (2019)]

e

π

R-ratio data for ee → ππ exclusive channel,
√

s = 0.6− 0.9 GeV region
Tension between most precise measurements (BABAR/KLOE)
R-ratio aHVP

µ uncertainty < difference in this channel

Avoid tension by computing precise lattice-only estimate of aHVP
µ

Use lattice QCD to inform experiment, resolve discrepancy
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Exclusive Channels in the HVP
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C(
t)

Long distance

π

γ γ

C(t) = 1
3
∑

i

〈 [
ψ̄γiψ

]
t

[
ψ̄γiψ

]
0

〉

≈
∑

n

∣∣ 〈Ω|ψ̄γiψ|n〉
∣∣2e−Ent

Correlator has large statistical error in long-distance region,
but contributions from high energy states are exponentially suppressed

Long distance correlator dominated by two-pion states,
but overlap of vector current with two-pion states is minimal

Strategy:
I Construct & measure operators that overlap strongly with ππ states
I Correlate these operators with the local vector current
I aHVP

µ computed by integrating with time-momentum representation kernel,
aHVP
µ =

∑
t wtC(t) [D.Bernecker & H.Meyer, 1107.4388 [hep-lat]]
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Computation Setup
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Ensemble Details

0.00 0.05 0.10 0.15 0.20 0.25 0.30
a[fm]

0
1
2
3
4
5
6
7
8

M
L

243 × 64
323 × 64

483 × 96643 × 128
963 × 192

483 × 64

Computed on 2 + 1 flavor Möbius Domain Wall Fermions for valance and sea,
Mπ at physical value on all ensembles

Computations using distillation setup
243 and 323 (+483) ensembles → infinite volume limit
483 and 643 (+963) ensembles → continuum limit
Compare results of explicit calculation of finite volume results

to Luscher + Gounaris-Sakurai prediction [H.Meyer, 1107.4388[hep-lat]]
Not presented here, see [C.Lehner, Lattice 2018]
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Operators
Operators constructed in I = 1, P-wave channel to impact upon HVPµ
Designed to have strong overlap with specific target states,

but all operators unavoidably couple to all states in HVP spectrum

Vector current operators:
I Local OJµ =

∑
x ψ̄(x)γµψ(x), µ ∈ {1, 2, 3}

I Smeared Ojµ =
∑

xyz ψ̄(x)f (x − z)γµf (z − y)ψ(y)

2π operators with On given by ~pπ ∈ 2π
L × {(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0)}

On =
∣∣∣∑xyz ψ̄(x)f (x − z)e−i~pπ·~zγ5f (z − y)ψ(y)

∣∣∣2
Also test two 4π operators with ~pπ = 2π

L × (1, 0, 0):

O4π =
∣∣∣∑xyz ψ̄(x)f (x − z)e−i~pπ·~zγ5f (z − y)ψ(y)

∣∣∣2 ∣∣∣∑xy ψ̄(x)f (x − y)γ5ψ(y)
∣∣∣2

Correlators arranged in a N × N symmetric matrix:

⊗ OJµ Ojµ O2π O4π

OJµ CJµJµ CJµ jµ CJµ2π CJµ4π

Ojµ Cjµ jµ Cjµ2π Cjµ4π

O2π C2π2π C2π4π
O4π C4π4π

→ C(t)
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Generalized EigenValue Problem (GEVP)

Generalized EigenValue Problem to estimate overlap with vector current & energies

C(t) V = C(t + δt) V Λ(δt)

Λnn(δt) ∼ e+Enδt , Vim ∝ 〈Ω| Oi |m〉

C(t) is the matrix of correlation functions from previous slide
Compute at fixed δt, vary t: plateau for large t

From result, reconstruct exponential dependence of local vector correlation function

C latt.
ij (t) =

N∑
n

〈Ω| Oi |n〉 〈n| Oj |Ω〉 e−Ent

In theory, infinite number of states contribute to correlation function
In practice, only finite N necessary to model correlation function
=⇒ finite GEVP basis is sufficient
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GEVP Results - Jµ + 2π Operators only
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6-operator basis on 48I ensemble: local+smeared vector, 4×(2π)
Data points from solving GEVP at fixed δt

C(t0) V = C(t0 + δt) V Λ(δt) , Λnn(δt) ∼ e+Enδt

Excited state contaminations decay as t0, δt →∞
moving right on plot =⇒ asymptote to lowest states’ spectrum & overlaps

Statistics+systematics; Left: Spectrum; Right: Overlap with local vector current
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Phase Shift
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BW: cot δ11 = − 2

Γρ
(E − Eρ)

Compute ππ scattering phase shifts in I = 1 channel from spectrum
Statistics + systematics
Compare to simple Breit-Wigner parametrization and pheno (courtesy of M.Bruno)
Good agreement with pheno for 32ID, 48I, 64I
24ID: remnant excited state contaminations, still to be removed
Scattering phase shift results to appear as part of series of papers by RBC+UKQCD
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Group Theory & Contraction Engine

An automated group theory engine has been an
integral part of RBC-UKQCD’s automated setup for
two-pion diagrams in exclusive channel study

Code builds a text representation of operators by performing
tensor products and irrep decompositions of lattice operators
with arbitrary spin & momentum

0 5 10 15 20 25 30
t/a

10 4

10 2

100

102

104

106

C(
t)

4 B

4 B 4 A

4 B 4 B

4 B 2 (p2 = 1)
4 B 2 (p2 = 2)
4 B 2 (p2 = 3)

This has resulted in a world-first computation of
4π to 4π correlation functions in I = 1 channel

+~p

−~p
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4π Contractions
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4π Contractions cont...
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4π Contractions cont... cont...
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GEVP Results - 4π Operators
Jµ + 2π
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Extra 4π states could appear with overlap to local vector current
Breakdown of formalism for FVC could occur at 4π threshold
Results unaffected by inclusion of 4π operators, but states resolvable

Overlap of 4π states with local vector current unresolvable
Overlap of states with 4π operator significant
=⇒ 4π state safely negligible in local vector current
=⇒ Will be neglected in all of following analysis
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Correlator Reconstruction and
Bounding
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Correlation Function Reconstruction - 48I
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Plotted: (weight kernel) × (correlation function); integral → aHVP
µ

GEVP results to reconstruct long-distance behavior of
local vector correlation function needed to compute connected HVP

Explicit reconstruction good estimate of correlation function at long-distance,
missing excited states at short-distance

More states =⇒ better reconstruction, can replace C(t) at shorter distances
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Improved Bounding Method
Use known results in spectrum to make a precise estimate of

upper & lower bound on aHVP
µ [RBC (2017)]

C̃(t; tmax,E) =
{

C(t) t < tmax

C(tmax)e−E(t−tmax) t ≥ tmax

Upper bound: E ≤ E0, lowest state in spectrum

Lower bound: E ≥ log[ C(tmax)
C(tmax+1) ]

BMW Collaboration [K.Miura, Lattice2018] takes E →∞

With good control over lower states in spectrum from exclusive reconstruction,
improve bounding method [RBC/UKQCD 2018 (CL@KEK Feb 2018)]:

Replace C(t)→ C(t)−
∑N

n |cn|2e−Ent and apply bounding procedure for aµ − δaµ

=⇒ Long distance convergence now ∝ e−EN+1t , lower bound falls faster
=⇒ Smaller overall contribution from neglected states

After bounding, add back δaµ =
∑∞

t=tmax
wt
∑N

n |cn|2e−Ent
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Bounding Method Results - 48I
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No bounding method: aHVP
µ = 638(21)

Bounding method tmax = 3.3 fm, no reconstruction: aHVP
µ = 626.5(8.6)

Bounding method tmax = 3.0 fm, 1 state reconstruction: aHVP
µ = 627.5(7.7)

Bounding method tmax = 2.9 fm, 2 state reconstruction: aHVP
µ = 629.1(5.7)

Bounding method tmax = 2.2 fm, 3 state reconstruction: aHVP
µ = 628.0(4.2)

Bounding method tmax = 1.8 fm, 4 state reconstruction: aHVP
µ = 626.2(3.9)

Bounding method gives factor of 3 improvement over no bounding method

Improving the bounding method increases gain to factor of 5, including systematics
Improvement should make all-lattice computation of aHVP

µ

competitive with R-ratio by 2020
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Bounding Method Results - 48I
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Improving the bounding method increases gain to factor of 5, including systematics
Improvement should make all-lattice computation of aHVP

µ

competitive with R-ratio by 2020
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Error Budget and Timeline

No new physics
KNT 2018

Jegerlehner 2017
DHMZ 2017
DHMZ 2012

HLMNT 2011
RBC/UKQCD 2018

Mainz 2019
FNAL/HPQCD/MILC 2019

SK 2019
ETMC 2018

RBC/UKQCD 2018
BMW 2017
Mainz 2017

HPQCD 2016
ETMC 2013

610 630 650 670 690 710 730 750

Lattice + R-ratio

Lattice

R-ratio

aµ × 1010

Update to RBC-UKQCD calculation including exclusive study in preparation
=⇒ on target for precision improvement on aHVP

µ at 5× 10−10 level
Further reduction will require full RBC-UKQCD program of computations
Work on the exclusive channel study using bounding method has led to

world-first estimation of finite volume corrections to aHVP
µ at physical Mπ

Complete analysis with full suite of systematic improvements ongoing
=⇒ precision improvement ×10 over original, target error on aHVP

µ at 1× 10−10

Compare to dispersive (3− 5)× 10−10
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Conclusions

Pion scattering exlusive study poised to improve theory preicision in (g − 2)µ:
I Dispersive approaches have unresolved tension in ππ scattering region,

circumvented by LQCD calculation
I Computed 2π → 4π, 4π → 4π correlation functions to show explicitly

that 4π state has negligible effect on HVP at physical Mπ

I Study of exclusive channels able to significantly reduce statistical uncertainty
on an all-lattice computation of aHVP

µ

=⇒ expect to reach precision of O(5× 10−10) by the end of year
=⇒ target O(1× 10−10) for all-lattice calculation

I Part of ongoing lattice study to address all lattice systematics in
RBC+UKQCD HVP computation (see [C.Lehner, Lattice 2019])

I New data on 643 ensemble being analyzed
I Paper in progress; posting planned before end of year

Thank you!
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Error Budget

[Blum et al., (2018)]

Full program of computations to reduce uncertainties:

Reduce statistical uncertainties on light connected contribution
Compute QED contribution
Improve lattice spacing determination
Finite volume and continuum extrapolation study
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First constrain the p-wave phase shift from our L = 6.22 fm
physical pion mass lattice:

 0
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 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3

δ 1

sqrt(s) / GeV

Gounaris-Sakurai Phase-Shift Parametrization
32ID lattice data (6.2fm box at phys. pion mass)
24ID lattice data (4.7fm box at phys. pion mass)

Eρ = 0.766(21) GeV (PDG 0.77549(34) GeV)
Γρ = 0.139(18) GeV (PDG 0.1462(7) GeV)

18 / 24[Lehner, Mainz 2018]

Aaron S. Meyer Section: BACKUP 38/ 35



Predicts |Fπ(s)|2:
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We can then also predict matrix elements and energies for our
other lattices; successfully checked!

19 / 24[Lehner, Mainz 2018]
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Finite Volume Corrections on the Lattice

Complete error budget needs extrapolation to infinite volume

FV shift can be measured directly from results of exclusive study
=⇒ First time this shift resolved from zero at physical Mπ!
=⇒ Previous bound at 10(26)× 10−10, Mπ = 146 MeV [1805.04250[hep-lat]]

Can compare FV shift predictions from phenomenological estimations:
Gounaris-Sakurai-Lüscher, proposed by H.Meyer
[Phys.Rev.Lett. 21, 244; Nucl.Phys.B 354; Phys.Rev.Lett. 107, 072002]
and scalar QED

aHVP
µ (L = 6.2 fm)− aHVP

µ (L = 4.7 fm) =

{
21.6(6.3)× 10−10 LQCD

20(3)× 10−10 GSL
12.2× 10−10 sQED

Good agreement with GSL in range of energies probed by LQCD
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